Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present new color transformations between select near-infrared filters on JWST/NIRCam, Euclid/NISP, Roman/WFI, HST, and ground-basedizY+IJHKS, for a total of 105 unique filter combinations. Additionally, we apply these transformations to predict the color–magnitude relation of the tip of the red giant branch as seen with JWST, Euclid, and Roman based on theoretical results for Hubble Space Telescope and Two Micron All Sky Survey filters; for JWST we find good agreement with empirical results in the literature. We also find typical residual dispersion around these transformations of 0.01 mag for Cepheid and RR Lyrae variables and RGB stars, but up to 0.1 mag for O- and C-rich TP-AGB stars.more » « lessFree, publicly-accessible full text available September 19, 2026
-
Abstract Near-infrared bandpasses on spaceborne observatories diverge from their ground-based counterparts as they are free of atmospheric telluric absorption. Available transformations between respective filter systems in the literature rely on theoretical stellar atmospheres, which are known to have difficulties reproducing the observed spectral energy distributions of cool giants. We present new transformations between the Two Micron All Sky SurveyJHKSand Hubble Space Telescope WFC3/IR F110W, F125W, and F160W photometric systems based on synthetic photometry of empirical stellar spectra from four spectral libraries. This sample comprises over 1000 individual stars, which together span nearly the full H-R diagram and sample stellar populations from the solar neighborhood out to the Magellanic Clouds, covering a broad range of ages, metallicities, and other relevant stellar properties. In addition to global color-dependent transformations, we examine band-to-band differences for cool, luminous giant stars in particular, including multiple types of primary distance indicators.more » « less
-
We provide homogeneous optical ( U B V R I ) and near-infrared (NIR, J H K ) time series photometry for 254 cluster ( ω Cen, M 4) and field RR Lyrae (RRL) variables. We ended up with more than 551 000 measurements, of which only 9% are literature data. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new light-curve templates for both RRc and RRab variables. The templates for the J and the H bands are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier and periodic Gaussian series). The new templates were validated by using 26 ω Cen and Bulge RRLs. We find that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag ( σ = 0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. We find that the accuracy of the mean magnitudes is also ∼0.01 mag ( σ = 0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular cluster Reticulum and by using literature data and predicted PLZ relations we find true distance moduli μ = 18.47 ± 0.10 (rand.) ± 0.03 (syst.) mag ( J ) and 18.49 ± 0.09 ± 0.05 mag ( K ). We also used literature optical and mid-infrared data and we found a mean μ of 18.47 ± 0.02 ± 0.06 mag, suggesting that Reticulum is ∼1 kpc closer than the LMC.more » « less
An official website of the United States government
